立体几何课件(热门20篇)
发表时间:2025-12-08⏣ 立体几何课件 ⏣
今天我上了立体几何后,对这节课有许多的想法。立体几何同学们在前面已经学习过,现在我们是一轮复习。今天,我们复习立体几何,却没有达到我预计的目的,主要表现在以下几个方面:
一、课堂气氛不活跃
立体几何要说难也难,要说简单也简单, 但涉及的知识比较多,定理定义比较多。学生认为立体几何比较难学,原因有这几个方面:(1)他们对三种语言之间的转换不熟练,给出符号语言,他们画不出图形,更不会用文字语言表达。(2)定理、定义记不得。例如证明线面平行,他们就不知道如何下手。(3)不会分析观察图形。给出一个图形,他们不知道怎样观察,如何入手。特别用空间向量来证明立体几何,很多同学建系是错的。所以他们一点兴趣都没有。看着学生上课一副无精打采的样子, 我心里也很着急。这样下去怎么办呢?。
二、没有完成教学目标
我们这节课主要是复习立体几何基础知识及应用。我举例正方体来讲基础知识,我知道正方体学生比较熟悉,而且用空间向量来做也比较容易。在复习时,我坚持由浅入深,循序渐进,逐步提高的原则,学生的确比较感兴趣,也容易理解。但由于在这用时过多,使立体几何的应用没有讲解。
三、没有做到精讲精练
这节课,学生参与课堂教学的机会少,整节课都是自己在台上讲,老师把所有的事情都包办了,使学生的能力得不到提高,约束了学生的发展。 通过这节课的反思,我知道以后自己要在这几个方面下功夫:(1)充分、认真备课,对学生的学习情况作认真的分析和预测,完成每节课的教学目标。(2)课堂教学中,注重师生互动交流,使学生积极参与学习,注重精讲精练。(3)要谦虚,再谦虚,多向别人请教、共同提高。
⏣ 立体几何课件 ⏣
我这节公开课的题目是《立体几何VS空间向量》选题背景是必修2学过立体几何而选修21又学到空间向量在立体几何中的应用。学生有先入为主的观念,总想用旧方法却解体忽视新方法的应用,没有掌握两种方法的特征及适用体型导致做题不顺利。针对此种情况,我特意选了这节内容来讲。
整节课,我是这样设计的。本着以学生为主,教师为辅的这一原则,把学生分成两组。利用学生的求知欲和好胜心强的这一特点,采取竞赛方式通过具体例题来归纳。分析概括两种方法的异同及适用体型。最终让学生在知识上有所掌握。在能力和意识上有所收获。
那么这节课我最满意的有以下几个地方
(1) 学生的参与
这节课的主讲不是我,是学生我要做的是设置问题和激发兴趣。至于整个分析过程和解决过程都是由学生来完成的。这节课二班学生积极参与,注意力集中。课堂气氛活跃学生兴趣浓厚,求知欲强,参与面大,在课堂中能够进行有效的合作与平等的交流。
(2) 学生的创新
这一点是我这节课的意外收获。在求一点坐标时,我用的是投影而该班周英杰同学却利用的是共线,方法简洁,给人以耳目一新的`感觉。另外该班的徐汉宇同学在两道中都提出了不同的做法。有其独特的见解。可见学生真的是思考了,我也从中获益不少。真的是给学生以展示的舞台。他回报你以惊喜。
(3) 学生的置疑
林森同学能直截了当的指出黑板上的错误而且是一个我没发现的错误这一点是我没想到的.这说明了学生的注意力高度集中.善于观察也说明了我们的课堂比较民主,学生敢于置疑.这种大胆质疑的精神值得表扬.
我不满意的地方有以下几点
(1) 题量的安排
5道题虽然代表不同的类型. 但从效果上看显得很匆忙.每道题思考和总结的时间不是很长,我觉得要是改成4道题.时间就会充裕效果就会更好些.
(2) 课件的制作
立体几何着重强调的是空间想象力,如果能从多个角度观察图形学生会有不同发现.比如徐汉宇同学的不同做法.需要对图形旋转.如果让他上黑板做图时间又不够.我想不妨让他画好图后用投影仪投到大屏幕上,效果会更好.
(3) 总结时间短
这节课的主题是两种方法的比较和不同方法的适用题型,后来的小结时间不够.这和我设置的容量大.有直接关系.没有突出主题.我想不如直接删掉一道题.空出时间让学生自己谈谈心得体会.自己找找解题规律应该会更好.
以上就是我对这节课的反思.其实我最想说的是我的心路历程.每次上公开课都能发现新问题.正是这些问题使我变得成熟,完善,我很珍惜每一次上公开课的机会.它使我理智的看待自己的教学活动中熟悉的习惯性的行为.使自己的教育教学理念和教学能力与时俱进.
⏣ 立体几何课件 ⏣
立体几何图形折纸图解:
将正方形纸四条边,每边折分成4等份;展开后,形成16个小方块形,如图1
折出两条对角线印,展开后,再折成双长方形,如图1
右下角折向上一格,如图1
打开。图解,此时留下了一个数学中小于符号。
掀起左下角,折出左上角第2格对角线,如图;
左上角第2格对角线的痕迹,如图;
同样方法折出左下边第2格的.短斜线,
实线向外进行山折,波浪线向里面谷折;图解:先将3与3谷折,字数多的2个小正方形,就会顺其自然地折叠重合;
立起来,简单调整,3个角就会集中在一个角端,如图
将有盖的、好玩的正立方体盒子就完成了
⏣ 立体几何课件 ⏣
立体几何训练题050
大纲理数6.G5、G11[2011·全国卷] 已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足.点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于()
3A.B.33
C.D.1 3
大纲理数6.G5、G11[2011·全国卷] C 【解析】∵α⊥β,AC⊥l,∴AC⊥β,则平面ABC⊥β,在平面β内过D作DE⊥BC,则DE⊥平面ABC,DE即为D到平面ABC的距离,在△DBC中,运用等面积法得DE,故选C.3大纲理数16.G11[2011·全国卷] 已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于________.
大纲理数16.G11 [2011·全国卷] 【解析】 法一:在平面BC1内延长FE与CB相3
交于G,过B作BH垂直AG,则EH⊥AG,故∠BHE是平面AEF与平面ABC所成二面角
aBE的平面角.设正方体的棱长为a,可得BE,BG=a,所以BH=,则tan∠BHE=32BHa
32=32a2
法二:设正方体的边长为3,建立以B1A1为x轴,B1C1为y轴,B1B为z轴的空间直角
→→坐标系,则A(3,0,3),E(0,0,2),F(0,3,1),则EA=(3,0,1),EF=(0,3,-1),设平面AFE的法
→→向量为n=(x,y,z),则n⊥EA,n⊥EF,即3x+z=0且3y-z=0,取z=3,则x=-1,y
=1,所以n=(-1,1,3),又平面ABC的法向量为m=(0,0,3),所以面AEF与面ABC所成的m·n3二面角的余弦值为cosθ=,∴sinθ=1-32=,所以tanθ=.11|m||n|11113
⏣ 立体几何课件 ⏣
1.如图所示,在四棱锥PABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形, ,M为PC上一点,且PA∥平面BDM.
(2)求平面ABCD与平面PBC所成的锐二面角的大小.
2.如图,平面平面ABC, 是等腰直角三角形,AC =BC= 4,四边形ABDE是直角梯形,BD∥AE,BD BA, , ,求直线CD和平面ODM所成角的正弦值.
3.如图,已知四棱锥PABCD的底面为等腰梯形,AB∥CD, ACBD,垂足为H,PH是四棱锥的高,E为AD的中点.
(2)若APB=ADB=60,求直线PA与平面PEH所成角的`正弦值.
4.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,BAD=90,ACBD,BC=1,AD=AA1=3.
(2)求直线B1C1与平面ACD1所成角的正弦值.
5.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点, AA1=AC=CB=22AB.
(2)求二面角D-A1C-E的正弦值.
6.如图,在圆锥PO中,已知PO=2,⊙O的直径AB=2,C是 的中点,D为AC的中点.
(2)求二面角B-PA-C的余弦值.
7.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1-DN-M的大小为.
(1)当=90时,求AM的长;
(2)当cos =66,求CM的长.
8.四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60.
(1)求AC1的长; (2)求BD1与AC夹角的余弦值.
⏣ 立体几何课件 ⏣
《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受平面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?
一、抓好入门教学,准确、牢固的理解和掌握概念、定理。
1、直观形象的引入观念。
在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:平面这一概念可借助平静的水面、平板玻璃的表面等这些给我们以平面形象的具体实物来引入。需注意的是,几何中的平面是在空间无限延展的,平静的水面、平板玻璃等只能看做平面的一部分。
2、借助已知概念理解新概念。
如借助直线理解平面,一条直线有两个点在一个平面内,那么这条直线上的所有点都在这个平面内。直线很直,平面必很平,直线无限延长,平面必无限延展。利用学生对直线的认识加深对平面的理解。
3、抓住要点掌握概念。
如二面角的平面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半平面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。
4、对比联系记忆概念。
如“不同在任一平面内的两条直线”与“在不同平面内的两条直线”有着本质的差异,前者是异面直线,而后者中的两条直线则有在同一平面内的可能。这样,对比不同的表述。找出其相异点,才能更好的理解记忆所学概念。
5、抓住定理中的关键“字词”。
如在线面垂直的判定定理中,如果一条直线垂直于一个平面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从平面外一点向一个平面引垂线段和斜线段”,必须强调“从平面外一点”和“一个平面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。
6、把握实质,概括精髓,加强对定理的记忆。
记得牢才能用的好,如对于三垂线定理和逆定理的记忆,可概括为“影垂则斜垂,斜垂则影垂,又如记忆线面平行的判定定理和性质定理,可概括为”线线平行则线面平行,及线面平行则线线平行。
二、避免常犯错误培养学生的空间想象力。
1、把立体问题当做平面问题来处理。
2、书写不规范,不严谨、不完善。
3、忽视图形的多种可能性。
⏣ 立体几何课件 ⏣
三、名词解释
1.2.3.4.5.土的可松性:自然状态下的土经开挖后,其体积因松散而增加,虽经回填压实,仍不能恢复到原来的体积,这种性质成为土地基处理:是指利用物理或化学的方法对地基中的不良土层进行置换、改良、补强,形成满足建筑要求的人工地基的过程。轻型井点降水:井点降水法是在基坑开挖前,先在基坑四周埋设一定数量的井点管和滤水管,挖方前和挖方过程中利用抽水“三 一”砌砖法:一块砖、一铲灰、一揉压,并随手将挤出的砂浆刮去的砌筑方法。砼保护层厚度及保护作用:砼保护层厚度是指纵向受力钢筋外边缘至砼构件表面的距离。保护砼中钢筋不受锈蚀。的可松性。设备,通过井点管抽出地下水,使地下水位降至坑底以下,避免产生坑内涌水、塌方和坑底隆起现象,保证土方开挖正常进行。
四、简答题
1.沉管灌柱桩施工工艺?
答:场地平整、定桩位→沉管设备就位→设桩靴→吊套管对位→校垂度→沉管→检查沉管质量→浇封底混凝土→放钢筋笼→浇筑桩身混凝土。
2.量度差值?
答:钢筋弯曲后,外边缘伸长,内边缘缩短,而中心线既不伸长也不缩短。由于钢筋下料长度系指中心线长度,而标注尺寸为外包尺寸,故钢筋弯曲后存在一个量度差值。因此,在计算下料长度时必须加以扣除,否则将形成下料太长造成浪费,或弯曲成型后钢筋尺寸大于要求造成保护层不够,甚至由于钢筋尺寸大于模板尺寸而无法安装。
3.为什么要进行施工配合比换算?
答:砼实验室配合比是根据完全干燥的砂、石骨料制定的,而施工现场的砂、石均有一定的含水率,且含水率大小又会随气候、季节发生变化。为保证现场拌制砼用料准确,故应将砼实验室配合比换算成骨料在实际含水率情况下的施工配合比。
4.分件安装法?
答:分件安装法是指起重机在车间内每开行一次仅吊装一种构件,待这一类构件安装完后,再吊装另一类构件,通常分三次开行安装完全部构件。第一次开行:吊装全部柱子,并对柱子进行校正和最后固定。第二次开行:吊装吊车梁和连系梁及柱间支撑等。第三次开行:分节间吊装屋架、天窗架、屋面板及屋面支撑等。
5.什么是施工缝?施工缝留设的一般原则是什么?
答:(1)混凝土不能连续浇筑完成,停歇时间又超过混凝土运输和浇筑允许的延续时间, 先、后浇筑的混凝土接合面称为施工缝.(2)施工缝的留设位置应在结构受剪力较小且便于施工的部位。
6.自行式起重机的工作参数?
答:在选择自行式起重机时,主要考虑起重量Q、起重半径R、起重高度H这三个工作参数。起重量是指起重机在一定起重半径范围内起重的最大能力;起重半径是指起重机回转中心到吊钩中心的水平距离;起重高度是指起重机吊钩中心到停机面的垂直距离。
7.孔道灌浆的作用?
答:一是保护预应力筋免遭锈蚀;二是使预应力筋与构件砼有效的粘结,以控制超载时裂缝的间距与宽度,并减轻两端锚具的负荷。
8.单层排架工业厂房柱子安装的施工工序?
答:单层砼排架结构工业厂房构件的安装施工包括绑扎、吊升、对位、临时固定、校正、最后固定等工序。
9.什么是先张法施工?其适用范围?
答:先张法施工,是在砼浇筑之前张拉预应力筋并将预应力筋用夹具临时固定在台座或钢模板上,待砼达到一定强度(一般不低于砼设计强度标准值的75%)时,放松或切断预应力筋,使预应力筋弹性回缩,借助预应力筋与砼间的粘结力传递预应力,使构件受拉区的砼获得预压应力。
适用于生产定型的中小型构件,如空心板、屋面板、吊车梁、檩条等。
10.什么是后张法施工?其适用范围?
答:后张法是先制作构件,并在构件中按设计规定的位置预留孔道,待砼强度达到设计规定的数值后,在孔道内穿入预应力筋进行张拉,使构件产生预应力,并用锚具将预应力筋锚固在构件的端部,最后进行孔道灌浆。预应力筋的张拉力主要是靠构件端部的锚具传递给砼,使砼产生预压应力。
适用于在现场生产大型构件,特别是大跨度构件,如薄腹梁、吊车梁和屋架等。
11什么是后张法? 答:后张法是在混凝土硬化至一定强度后,再张拉预应力筋的预应力混凝土生产方
法。它是在构件设置预应力筋的部位,预先留有孔道,然后灌筑混凝土,待达到规定强度后,将钢筋(丝)
穿入预留孔道中,按设计要求的张拉控制应力进行张拉,并且专门的锚具将钢筋(丝)锚固在构件的两
端,同样由于钢筋的弹性回缩,对混凝土施加压力,再在孔道中灌入沙浆,以保护钢筋,减缓锈蚀。
⏣ 立体几何课件 ⏣
几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
几何体展开图规律:
1、沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;
2、同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图。
注意:
①正方体展开头记忆口诀:
正方体盒巧展开,六个面儿七刀裁;
十四条边布周围,十一类图记分明;
四方成线两相卫,六种图形巧组合;
跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
②在正方体的展开图中,一条直线上的小正方形不会超过四个。
③正方体的展开图不会有"田"字形,"凹"字形的形状。
⏣ 立体几何课件 ⏣
高考数学立体几何答题技巧高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分01、合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
02、通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
03、解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
高考数学4种答题技巧1、以退求进,立足特殊。
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上。
2、执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
3、回避结论的肯定与否定,解决探索性问题
对探索性问题,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
4、应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念;透过冗长叙述,抓住重点词句,提出重点数据;综合联系,提炼关系,依靠数学方法,建立数学模型,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
⏣ 立体几何课件 ⏣
平面
通常用一个平行四边形来表示。
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a) A∈l—点A在直线l上;Aα—点A不在平面α内;
b) lα—直线l在平面α内;
c) aα—直线a不在平面α内;
d) l∩m=A—直线l与直线m相交于A点;
e) α∩l=A—平面α与直线l交于A点;
f) α∩β=l—平面α与平面β相交于直线l。
平面的基本性质
公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;
公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线;
公理3经过不在同一直线上的三个点,有且只有一个平面。
根据上面的公理,可得以下推论,
推论1经过一条直线和这条直线外一点,有且只有一个平面;
推论2经过两条相交直线,有且只有一个平面。
推论3经过两条平行直线,有且只有一个平面。
公理4平行于同一条直线的两条直线互相平行。
拓展阅读:高中数学立体几何解题技巧
1.平行、垂直位置关系的论证的策略:
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2.空间角的计算方法与技巧:
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3.空间距离的计算方法与技巧:
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
⏣ 立体几何课件 ⏣
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出
学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1) 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2) 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3) 面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
立体几何解题过程中,常有显著的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换,如能建立空间坐标系可用空间向量来解决。只有不断总结,才能不断高。
⏣ 立体几何课件 ⏣
空间向量的引入丰富了立体几何教学的内容,这主要体现在课程理念变化以及课程内容改变两个方面。
新课程注重学习方式的改革,要求学生转变单一的被动接受式学习,把学习过程中的发现、探究等认识活动凸显出来,在教师的积极引导下实现学生自我的“再创造”。在立体几何中引入空间向量正是适应新课程理念的表现,空间向量的出现为学生提供了解决问题的新途径,融合了计算机技术与数学知识,直接利用向量的方式提出问题为学生解答立体几何题目提供了新的解题方法。这就密切了数学知识与日常生活实际的联系,加强了数学知识的实用性。同时,空间向量的引入,促进了学生数学应用意识的形成和发展,提高了学生的实践能力。
空间向量作为一个独立的知识体系纳入教材当中,涵盖了空间向量的定义和原理、线性运算、直角坐标运算、两个向量的数量积、空间向量在立体几何的应用等方面,这丰富了立体几何的教学内容。
空间向量降低了学习的难度体现在向量的.特征上。一方面,向量是代数的,因此可以对它进行加、减、乘、除等运算,这就丰富了运算形式,也使抽象的概念有了具体的形式。以运算为载体,发挥空间想象能力,就可以对问题进行实际的运算、证明以及演绎。另一方面,向量又是几何的,因此可以直接描述、想象、替代向量中点、线、面等对象,并可观察到各研究对象之间的基本关系。这就为一些计算能力比较强但空间想象能力较弱的学生解题提供了新的出路,降低了其学习的难度。例如,证明以⊙O的直径AB为一边的圆内接△ABC是直角三角形。(图略,也就是求证∠BAC是直角)
因此AB⊥AC,所以△ABC是直角三角形。
三、空间向量的引入降低了学生的空间想象力
空间向量的引入,为学生解答立体几何问题提供了新的方法。但是也有不少人认为,空间向量的引入削弱了学生的逻辑思维能力,降低了学生的空间想象能力。空间向量的引入把几何问题转化为代数问题,密切了代数与几何的关系,丰富了学生的思维方式,但是容易造成空间向量就是“万能”的思想,很多学生完全放弃了传统的综合法,试图通过空间向量的方法来解决一切立体几何问题。运用空间向量来解决数学问题这一思路的推广还需要注意从以下几方面来努力:
兴趣和好奇心是培养和激发学生积极性的内在动力。这就需要教师从学生的年龄特征和心理特点出发,筛选出与该模式相适应的教学内容。具体来说,在空间向量的学习中,可采取启发式和探究式。教师要充分发挥学生的主体作用,教师主要扮演引导者和促进者的角色,从而培养学生自主发现问题、自主解决问题、探索问题的能力。当然,对于一些较难的知识,教师要引导学生对原有知识的复习,提高知识的概括化水平,建立知识的网络化,促进学生学习的迁移。教师应该鼓励学生动手,调动学生的主动性和积极性,引导他们通过独立思考、积极探索,生动活泼的学习,自觉掌握科学知识,提高分析问题和解决问题的能力,鼓励学生将知识创造性地运用于实际。如,在学习“空间向量”这一概念时,教师可以利用学生原有知识复XXX面向量和立体几何的基础知识。如,教师可以设置以下问题:(1)空间两条直线的位置关系是:平行、相交、异面,空间两个向量的关系?(2)空间两条平行直线确定一个平面,空间中两个平行向量确定一个平面?(3)空间两条相交直线确定一个平面,空间中两个不平行向量确定一个平面?再如这一例题,在直三棱柱ABC-A1B1C1中,△ABC是边长为4的等边三角形,B1B=2,求异面直线BC1和A1C所成的角(图略)。教师可以帮助学生建立空间直角坐标系,教师可以引导学生作出BC和B1C1的中点M和N,然后利用底面三角形的高MA、侧棱MN以及底面三角形的边对MC这三条互相垂直的直线来建立空间直角坐标系,通过设置
问题情境,引导学生一步步地将空间向量运用于具体的数学习题中。
虽然空间向量确实在解决立体几何问题时具有独特的优势,但是综合法的运用也至关重要,综合法对于培养学生思考问题的习惯、提高空间想象力以及逻辑思维能力有很大的影响。因此,在使用空间向量时,首先要注重一题多解。要教授学生不能一味地以解决问题为目的,而要鼓励学生从多个角度,采用多种方式来解决问题,培养一题多解的思维方式,举一反三,灵活多变。其次,教师在教学中要注意对空间向量法与综合法教学的平衡性,要精心
更为便利的立体几何习题,增强学生运用综合法思考问题的积极性,让学生主动使用综合法来解决立体几何问题,通过一题多解的方式实现训练学生空间想象能力和逻辑思维能力的目的。
在立体几何中引入空间向量这一内容是新课程改革的必然趋势。空间向量引入立体几何教学中,对于摆脱“形到形”这一传统综合法,丰富解题方式具有重要作用,在一定程度上降低了学生的学习压力,但是在运用空间向量时,也不能一味地突出其优势,要重视其缺点,与综合法并用,促进学生的全面发展。
参考文献:
[1]黄长春。利用空间向量方法解决立体几何的问题[J]。数学学习与研究,.
[2]刘福亮。向量法在立体几何解题中的妙用[J]。数学学习与研究,.
⏣ 立体几何课件 ⏣
立体几何方法归纳小结
一、线线平行的证明方法
1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A,过a的平面B与平面A相交于b,则 a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线 a与直线 b,则a//b。
5、由向量共线定理,若ABxCD,且AB、CD不共线,则向量AB所在的直线a与向量cd所在的直线b平行,即a//b。
二、线面平行的证明方法
1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面 A内存在一条直线b与平面外的直线a平行,则a//A。(用相似三角形或平行四边形)
3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
4、向量法,向量c与平面A法向量垂直,且向量c所在直线c不在平面内,则c//A。
三、面面平行的证明方法
1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
5、向量法,证明两平面的法向量共线。
四、两直线垂直的证明方法
1、根据定义,证明两直线所成的角为90°
2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).5、向量法.五、线面垂直的证明方法
1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.6、向量法,证明平面的法向量与表示该直线的向量共线.六、面面垂直的证明方法
1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。
3、一平面垂直于两平行平面中的一个,也垂直于另一个。
4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。
七、两异面直线所成角的求法
1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。
2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。
3、cos=cos1cos2
4、向量法.八、直线与平面所成角的求法
1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。
2、转化为距离(sin=h/l)
3、向量法,求出平面的法向量,然后求平面的斜线与法向量的夹角。(注意为正弦)注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。九、二面角的求法
1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。
2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。
3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s(其中θ为二面角的平面角,s'为射影多边形的面积,s为多边形的面积)求出二面角的平面角。
4、向量法,求出两个半平面的法向量,然后求两法向量的夹角。(一般要先根据已知判断二面角是锐角还是钝角,否则要判断指向,同内同外为补角)
5.公式法(异面直线上点距离公式和三类角公式)
十、点到平面的距离的求法
1、根据定义,直接求垂线段的长度。
2、向量法,利用公式
|PAn|d=|n|(其中PA为平面的一条斜线,向量n 为平面的一个法向量。
3、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。
十一、平面图形翻折问题的处理方法
1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。
2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。
十二、要注意的问题
1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。(向量法可省略证角,但必须交代如何建系,右手系)。
2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。
3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)
4、适当时候,坐标法不方便时可以考虑基向量法,求向量模易出错:rar2a。
5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。
⏣ 立体几何课件 ⏣
随着计算机的普及,计算机的应用随之渗透到社会生活的各个方面。学校的教学如果不利用这一新技术便会落后于时代。CAI在教学中的地位不会只是一种时髦,由于它的形象、方便、速度、效率等等方面的优点,这一方式势必会被大部分学生和教师所接受,而成为一种潮流。这一时刻的到来会比预想的快。实际上,当学校的教师们把计算机作为他们生活的一部分时,他们自然会把CAI作为他们教学手段的一部分。对于数学教师来说,这一进程可能会来得更快,毕竟我国高校第一代计算机教师有相当一部分出身于数学领域。
目前流行于市的CAI著作并不多见,但软件市场可见到不少cAI软件商品。其中绝大部分是对学生进行课外辅导性质的。实际上,CAI所涉及的面很广,它包括教与学的各个方面。任何一个软件几乎都不可能覆盖它的全部内容。本文也只打算对数学课堂教学软件的设计问题进行探讨。任何一个软件产品,制作者都要事先确定该软件要达到的目的,然后根据此目的制定一系列具体的设计要求。如果该产品已经很成熟,这些要求会成为公认的标准。数学课堂教学CAI软件的制作目的当然也是数学教学的最终目的,即使学生掌握相应的教学内容。教学的最后效果是通过学生对知识的掌握来衡量的,但大部分时间往往采取一种更简易的评价方法----就课论课。例如大部分的公开教学或观摩课,最后的`评价并不是去考学生而是听课者按照已有的或心目中的标准来衡量这节课的好坏。对教学软件的评价暂时也只好采取这种方法。实际上设计的原则与评价的原则应该一致。由于目前课堂教学软件不多,且大部分是各个教学单位为自己的教学而开发的,缺少统一的标准。笔者只是把自己在这方面的一些设想与心得写出来,与同行切磋。
2.1.“辅助”的含义就是以教师为主计算机永远也不会取代教师上课,就象计算机不能取代人的思维一样。把软件搞成录像式的就完全失去了教师的作用,这是最失败的软件。除了特殊情况,如偏远地区无教师或一些冷门学科找不到相应的教师只好采用纯电教手段外,教学软件应是主讲教师的助手。一个优秀的教师是任何软件也替代不了的。
一个好的软件应能适合不同特点的教师的要求,这就需要软件更加灵活。比如一个立方体,有的教师喜爱正等测投影,而另一些教师喜爱正二测,这大部分取决于他们使用该软件前的讲课习惯。如果一个图形,教师自己看着都不习惯,当然不能指望他会很自然和流畅地讲给学生。那么对这个软件来说,该立方体的随机旋转能力便是非常重要的了。教师可根据自己的需要和习惯来选择该立方体关于三个坐标轴的转角,旋转过程对学生是透明的。实际上,教师在选择合适方位的过程本身也是一个很好的教学内容。教师甚至可以安排图形的颜色、说明文字的位置……,这时教师才会真正感觉到自己是这个软件的主人。试想一下,如果对一个使用软件的教师来说唯一能作的就是控制它的运行和停止,所有的画面都是编程者闭门造车设计出来的,这会是什么感觉!
⏣ 立体几何课件 ⏣
新课标立体几何常考证明题
1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点
(1)求证:EFGH是平行四边形
(2)若
BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。
C D H证明:在ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH同理,FG//BD,FG
(2)90°30 °
考点:证平行(利用三角形中位线),异面直线所成的角 1BD 21BD∴EH//FG,EHFG∴四边形EFGH是平行四边形。
22、如图,已知空间四边形ABCD中,BCAC,ADBD,E是AB的中点。求证:(1)AB平面CDE;
(2)平面CDE平面ABC。E BCAC证明:(1)CEAB AEBE
同理,ADBDDEAB AEBEB C 又∵CEDEE∴AB平面CDE
(2)由(1)有AB平面CDE
又∵AB平面ABC,∴平面CDE平面ABC
考点:线面垂直,面面垂直的判定
D3、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,求证: AC1//平面BDE。
证明:连接AC交BD于O,连接EO,∵E为AA1的中点,O为AC的中点 ∴EO为三角形A1AC的中位线 ∴EO//AC1 又EO在平面BDE内,A1C在平面BDE外
∴AC1//平面BDE。考点:线面平行的判定
4、已知ABC中ACB90,SA面ABC,ADSC,求证:AD面SBC. 证明:∵ACB90°BCAC
又SA面ABCSABC
BC面SACBCAD
A
D
1B
C
D
C
S
A
C
B
又SCAD,SCBCCAD面SBC考点:线面垂直的判定
9、如图P是ABC所在平面外一点,PAPB,CB平面PAB,M是PC的中点,N是AB上的点,AN3NB(1)求证:MNAB;(2)当APB90,AB2BC4时,求MN的长。证明:(1)取PA的中点Q,连结MQ,NQ,∵M是PB的中点,M
P
∴MQ//BC,∵ CB平面PAB,∴MQ平面PAB∴QN是MN在平面PAB内的射影,取 AB的中点D,连结 PD,∵PAPB,∴C
A
PDAB,又AN3NB,∴BNND
N ∴QN//PD,∴QNAB,由三垂线定理得MNAB B
1
(2)∵APB90,PAPB,∴PDAB2,∴QN1,∵MQ平面PAB.∴MQNQ,且
MQBC
1,∴MN
2考点:三垂线定理
12、已知ABCD是矩形,PA平面ABCD,AB2,PAAD4,E为BC的中点.
(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角. 证明:在ADE中,ADAEDE,AEDE ∵PA平面ABCD,DE平面ABCD,PADE
又PAAEA,DE平面PAE(2)DPE为DP与平面PAE所成的角
在Rt
PAD,PDRt
DCE中,DE在RtDEP中,PD2DE,DPE300 考点:线面垂直的判定,构造直角三角形
15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB的中点F,连结CF,DF.∵ACBC,∴CFAB.
∵ADBD,∴DFAB.
又CFDFF,∴AB平面CDF.∵CD平面CDF,∴CDAB.又CDBE,BEABB,∴CD平面ABE,CDAH.
∵AHCD,AHBE,CDBEE,∴ AH平面BCD. 考点:线面垂直的判定
⏣ 立体几何课件 ⏣
今天我们结束了必修二的第一部分内容立体几何的学习,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学习立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。
其实,任何知识的学习都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学习和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。
要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关平行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。
课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。
⏣ 立体几何课件 ⏣
【关键词】五年制幼师;数学教育;幼儿园数学教育;衔接;做中学
【案例主题】
幼师二年级上学期的数学教学内容中包含了立体几何的教学,在此教学过程中,需要学生学会求解空间几何体的表面积和体积,为了学生们能在“做中学”,充分了解几何体的侧面展开图,同时也为了学生们能在幼师学习阶段与幼儿园的数学教学内容多做接触,我们开展了立体几何手工制作活动。
【案例描述】
首先,在立体几何的教学过程中,教师通过课堂授课的形式,学生们基本掌握了柱锥台球等一些基本的几何体,接着,教师向学生们介绍了张慧和、张俊所著的《幼儿园教师教育丛书――幼儿园数学教育》一书中的第六章幼儿空间和几何形体概念的教育,学生初步了解幼儿空间和几何形体概念的发展特点与要求,然后教师给出幼儿园数学教育各年龄阶段目标(小班、中班、大班)分发给学生作为参考,同时提出活动要求:全班按照每四人一组划分,结合已经学过的立体几何部分内容,选定一个主题,写出幼儿教学简案,制作与幼儿园数学教学相关的手工作品。
手工制作是学生在课后分组完成的,作品完成后按组为单位收上来。在这些作品中有些很值得关注的闪光点。
例如,有一个小组的作品是参照幼儿玩具制作的,如图所示。
该组撰写的幼儿教学简案如下:
主题:帮助几何体宝宝回家
适合班级:小班
准备工具:一个大房子(表面挖有镂空的图形),正方体若干,长方体若干,圆柱若干,圆锥若干。(将几何体按幼儿人数放在每一组的桌子上)
教学目的:幼儿能够认识简单的平面图形
教学流程:
1.指出大房子上的图像,幼儿找出对应可以穿过此图形的几何体。
2.罗列出几何体的底面或侧面的平面图形,让幼儿能够看出各形状的特点。
3.知道幼儿学习各平面图形的名称(正方形,长方形,圆形,三角形).
【案例分析】
本次教学实践活动,主要是希望通过同学们的动手制作加深对几何体的表面积和体积的认知,同时也希望幼师学生们能将目前的数学知识和幼儿园的数学教育联系起来,希望学生们能在幼师学习阶段就尝试了解幼儿园的数学教学要求和相关内容,并能试着尝试适应幼儿教师这一职业。
在以往的教学过程中,有些数学基础较弱的同学上数学课总是觉得枯燥烦琐,畏难情绪比较严重,甚至有的同学会出现厌学情绪。同时,目前的幼儿园在职教师,脱离学校时间越久,对于相关的基础数学知识就会遗忘得越多,这些都是不利于幼儿教师的专业发展的。
国内幼儿园的数学课开设很早,教学也很成熟,但幼儿园教师大多针对所教内容进行教学设计,容易忽视其中蕴含的数学原理与数学思维,也就是无法将自己在幼师阶段学习的数学内容融合到教学中去,从而无法站在更高的理论角度进行教学。只有幼儿园教师自己的科学素养提高,才能在理论指导下,在幼儿日常生活和活动区中引入数学活动,在主题探索活动中开展渗透性数学活动。
通过此次教学实践活动的尝试,我逐渐摸索到幼师数学教育与幼儿园数学教育的衔接之处,学生在学习数学理论知识的同时,融入幼儿园的数学教学内容,提高学生的专业素养和意识,从而希望可以改变现今幼师教学中,数学理论知识与幼儿数学教育脱节的现状。
⏣ 立体几何课件 ⏣
第一要建立空间观念,提高空间想象力。
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。
第二要掌握基础知识和基本技能。
要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。
第三要不断提高各方面能力。
通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。
要注意积累解决问题的策略。如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。要不断提高分析问题、解决问题的水平:一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。要不断提高反省认知水平,积极反思自己的学习活动,从经验上升到自动化,从感性上升到理性,加深对理论的认识水平,提高解决问题的能力和创造性。
⏣ 立体几何课件 ⏣
【内容摘要】计算机辅助教学,简称CAI,是一种现代化的教学手段,CAI辅助教学利用形象生动的画面,言简意赅的解说,悦耳动听的音乐,即时有效的反馈,给数学课增添了无穷的魅力。在小学数学教学中,CAI的运用,是一种高层次、高效率的教育方法。它有利于学生数学知识的形成,对学生主体性的发挥,思维创新能力的培养与发展,有着不可估量的影响。为培养高素质的人才,提高民族素质打下坚实的基础。本文就运用多媒体辅助教学优化小学数学课堂教学,作一些初步的探讨。
教学媒体的发展:随着科学技术的发展,传统的教学媒体如黑板、教科书承载信息的种类和能力都十分有限,远远满足不了现代教学的需要。随着电子技术的发展,出现了大量媒体,如幻灯、投影、录音、录像等,这些媒体承载信息的能力大大提高,已被广泛应用于教学领域,但这些媒体也在一定程度上存在各自的弱点,如幻灯投影不易表现事物的'运动,电视录像缺乏灵活的交互功能,不能实现人机对话,更谈不上智能化。多媒体计算机有取众之长的优势,可以将多媒体信息集成于一体,而且有极灵活的交互功能,代表了教学媒体发展的方向。
教学方法的发展:人类已进入信息时代,以计算机和网络为核心的现代技术的不断发展,正在越来越深刻地改变着我们的生产方式、生活方式、工作方式和学习方式。在小学数学教学中,适时恰当地选用多媒体来辅助教学,以形象具体的“图、文、声、像”来创造教学的立体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,使其重视实践操作,科学地记忆知识,并且有助于学生发挥学习的主动性,积极思考,使教师以教为主变成学生以学为主,从而提高教学质量,优化教学过程,增强教学效果。数学教师应该从自己学科的角度来研究如何使用计算机来帮助自己的教学,把计算机技术融入到小数学科教学中――就像使用黑板、粉笔、纸和笔一样自然、流畅,使学校教育朝着自主的、有特色的课程教学方向发展。
1、理论依据:
运用计算机辅助教学,对优化小学数学课堂教学的效果有多大呢?教育心理学研究表明:人们从听觉获得的知识能够记忆约15%,从视觉获得的知识能够记忆约25%。如果同时使用这两种传递知识的工具,就能接受知识约65%。传统电教媒体中,幻灯片投影有像无声,录音机有声无像,录像电视虽然声像俱全,但制作需要专门的设备。CAI辅助教学可以充分发挥这三机一幕的优势,做到图文并茂,充分地展现知识形成的过程。
国际知名数学教育家弗兰登培尔认为:学习数学需要独立思考,而思考需要实践的辅助。数学课程首先应当让学生知道他们面对的内容是什么,给学生留出可以思考和可以操作的空间。如果内容本身象“天外来客”般的让人感到无法琢磨,学生不知道怎样做和怎样思考,就会感到茫然和无能为力,即思考需要一定的媒介为载体,“物质决定意识”。这说明,数学教师在课堂内给学生提供思考的载体的重要性,而多媒体课件的演示及实验恰好提供了这样的载体,它可以让学生从具体问题到抽象概念,从特殊关系到一般规律,逐步通过自己的发现去思考数学,学习数学。所以运用CAI手段符合数学教育的特点,对优化小学数学课堂教学定有帮助。
2、有关界定:
①多媒体计算机系统可对声、像等多种信息进行采集、加工、处理、编辑并综合地呈现各种信息,吸收学生的注意力。
②多媒体计算机配合智能化学习软件的使用,不仅向学习者传递各种信息,而且还可以实现人机交互,在交互过程中使学习者主动参与,自觉地学习。
③有利于开展各种不同的教学模式的教学活动,在课堂中,多媒体计算机的使用,使各种教学信息的呈现方式更加自然和方便,各种媒体的交互界面更趋合理,逼真,因此,也就容易集中学生的有意注意力,提高学习者的学习兴趣。
④多媒体计算机技术的应用,使得过去常规手段教学中难以开发和表现的现象,较复杂的逻辑关系和较难建立起来的时空关系得到一个较理想的展示和交互的学习环境;与真实现象极其相似的二维、三维动画和声音,以及对现实事物运动、变化的虚拟,使学习者很方便地走进在现实生活中难以实现的特殊环境,体验和经历那些平时无法实现或难以实现的事物变化过程,从而提高教学效率。
3、研究的目标:
通过计算机辅助数学教学,改变数学教学的枯燥、单调的课堂气氛,唤起学生的学习兴趣,发展学生的思维品质,以达到(1)优化教学过程,大面积提高教学效率。(2)调动学生的积极性。(3)面向全体学生,使每一个学生的思维能力得以提高。
⏣ 立体几何课件 ⏣
引言:
立体几何是数学中的一个重要分支,对于学生的综合能力和思维发展具有重要的促进作用。本文将针对中学生的学习特点和教学需求,编写一份立体几何的教案,设计丰富的教学活动,以帮助学生掌握立体几何的基本理论和解题方法。
一、教学目标:
1. 掌握立体几何的基本概念,如平行四边形、立方体等。
2. 理解三维图形的特点和特殊性质,如平行四边形的对角线垂直等。
3. 能够运用所学知识分析和解决与立体几何相关的问题。
4. 培养学生观察能力、空间想象力和逻辑思维能力。
二、教学内容:
1. 立体几何的基本概念和特征。
2. 空间图形的构造和性质。
3. 空间图形的计算与运用。
三、教学重点和难点:
1. 掌握立体几何的基本概念和特征。
2. 理解平行四边形的性质和应用。
3. 解题方法和思路的培养。
四、教学过程:
第一节:立体几何的基本概念和特征
1. 引入:通过展示一些立体几何的实物图形,引发学生对立体几何的兴趣,并让学生描述这些图形的特点和特征。
2. 教学:讲解立体几何的基本概念,如点、线、面和体。通过示意图和实例向学生解释这些概念,并引导学生思考这些概念的应用。
第二节:空间图形的构造和性质
1. 引入:通过展示一些常见的空间图形,引导学生观察和分析它们的构造和特点。
2. 教学:讲解平行四边形的性质,如对角线相等、对角线垂直等。通过示意图和实例,向学生介绍平行四边形的定义和特征,并让学生探索平行四边形的应用场景。
第三节:空间图形的计算与运用
1. 引入:通过实际问题引导学生思考如何运用立体几何的知识解决问题。
2. 教学:讲解如何计算空间图形的面积和体积,并通过实例进行计算演示。同时,讲解如何利用立体几何的知识解决实际问题,如计算箱子的容积、体积等。
五、教学方法:
1. 演示法:通过展示实物图形和示意图,帮助学生理解立体几何的概念和特性。
2. 实践法:引导学生通过实际问题的解决思考,培养学生独立思考和解决问题的能力。
3. 讨论法:引导学生探讨立体几何的概念和问题,促进学生之间的互动和合作。
六、教学评价:
1. 课堂练习:通过课堂练习,检验学生对于立体几何的掌握情况和运用能力。
2. 作业评价:布置立体几何相关的作业,培养学生的综合应用能力和解决问题的能力。
3. 案例分析:引导学生分析和解决具体的立体几何问题,帮助学生将理论知识运用到实际问题中。
七、教学参考资源:
1. 教材:根据学生教材的内容编写课堂教案和作业。
2. 辅助教材:选择一些立体几何的相关辅助教材,如教学视频、教辅书籍等。
3. 多媒体教具:利用多媒体教具,如投影仪、电脑等,展示立体几何的概念和操作过程。
结语:
通过本教案的设计和实施,可以帮助学生全面地掌握立体几何的基本概念和解题方法,培养学生的观察能力、空间想象力和逻辑思维能力。同时,通过讲解立体几何的实际应用,激发学生对数学的兴趣和思考能力。希望本教案能够对教师在立体几何教学中有所帮助,提高学生的学习效果和兴趣。
-
需要更多的立体几何课件网内容,请访问至:立体几何课件
