实用文书网

一元一次方程教案(实用7篇)

发表时间:2025-06-17

作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。

一元一次方程教案 篇1

一、内容与内容分析

内容

一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。

内容解析

通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。

教学重点

经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题

二、目标和目标解析

1.目标

(1)运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法

(2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断

(3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力

(4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.

2.目标解析

(1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;

(2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;

(3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;

(4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、教学问题诊断分析

在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的数据较大,在计算上也会给学生带来困难。

教学难点

明确问题中的已知量与未知量间的关系,寻找等量关系

四.教学支持条件分析

ppt、白板交互、微课、实物投影

五、教学过程设计

1.数学活动1 创设情境,导入新课

播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.

你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的'数据,试用一元一次方程求:

(1)山水市前年居民的人均收入为多少元?

(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?(精确到0.1元)

(学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)

师引导:说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;

生回答:通过查阅资料或其他方式解释.

师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?

生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)

(2)去年价格上涨率=8%-6.5%=1.5%

生独立做,后展示结果.

(1)解:设山水第前年居民人均收入为x元

列方程(1+8%)x=11664

解得x=10800

答:山水市前年居民的人均收入为10800元

(2)解:设前年的售价为x元

(1+1.5%)x=1000

解得x≈985.2元

答:在山水市,去年售价为1000元的商品在前年的售价为985.2元

师生共同解决问题.

练习:数据表明:从19xx年至2001年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到2001年底已经升到14652亿元,比上一年增长11.67%,比全国各行业的增加值年均增长高出2.37个百分点。

你能算出2000年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,2001年全国其它行业的工业产值是18895亿元,你能计算出2000年的总产值吗?

【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。

活动二.动手实践、探索新知

播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.

用一根质地均匀的木杆和一些等重的小物体,做下列实验:

(1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;

(2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;

(3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;

(5) 在木杆左边继续加挂重物,并重复以上操作和记录

想想可以怎样替代实验?根据记录你能发现什么规律?

师引导:没有木杆,重物等实验用具,我们可以设计替代实验。

生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动

师介绍:展示两种试验方法,及数据

师问:根据记录你能发现什么规律?

生:思考回答。

师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡。设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程

2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。

【设计意图】

活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验

说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。

布置作业。

请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程

六、目标检测设计

小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长3.8米。你能帮他俩解决这个问题吗?

【设计意图】

对本节重点内容进行现场检测,及时了解教学目标的达成情况。

一元一次方程教案 篇2

教学目标:

1.使学生进一步掌握解一元一次方程的移项规律。

2.掌握带有括号的一元一次方程的'解法;

3.培养学生观察、分析、转化的能力,同时提高他们的运算能力。

教学重点:

带有括号的一元一次方程的解法。

教学难点:

解一元一次方程的移项规律。

教学手段:

引导——活动——讨论

教学方法:

启发式教学

教学过程

(一)、情境创设:

知识复习

(二)引导探究:带括号的`方程的解法。

例1.2(x-2)-3(4x-1)=9(1-x).

解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)

去括号,得:

移项,得:

合并同类项,得:

系数化1,得:

遇有带括号的一元一次方程的解法步骤:

(三)练习:

(A)组

1.下列方程的解法对不对?若不对怎样改正?

解方程2(x+3)-5(1-x)=3(x-1)

解:2x+3-5-5x=3x-1,

2x-5x-3x=3+5-3,

-6x=-1,

2.解方程:

(1)10y+7=12-5-3y;

(2)2.4x-9.8=1.4x-9.

3.解方程:

(1)3(y+4)12;

(2)2-(1-z)=-2;

(B)组

(1)2(3y-4)+7(4-y)=4y;

(2)4x-3(20-x)=6x-7(9-x);

(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

(四)教学小结

本节课都教学哪些内容?

哪些思想方法?

应注意什么?

一元一次方程教案 篇3

一、活动内容:

课本第110页111页 活动1和活动3

二、活动目标:

1、知识与技能:

运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:

(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

3、情感态度与价值观:

通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、重难点与关键

1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

2、难点:以上重点也是难点

3、关键:明确问题中的已知量与未知量间的`关系,寻找等量关系。

四、教具准备:

投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

五、教学过程:

(一)、活动1

一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

这个人买了n件商品需要多少元?

教师活动:

(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

(2)教师对学生在发表解法时存在的问题加以指正。 学生活动:

(1)分组后对活动一的问题展开讨论,探究解决问题的方法。

(2)学生派代表上黑板板演,并发表解法。

解: 2.2n n100

2.2100+2(n-100) n100

问题转换:

一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

(1)这个人买这种商品多少件?

(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

教师活动:同上 学生活动:同上

解:(1) n220

100+ n220

(2) =0.48n n=0

100+ =0.48n n=500

(二)、活动2:

本活动课前布置学生做好活动前的准备工作:

1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

2、分组:(4人一组)

开始做下面的实验:

(1)把直尺的中点放在支点上,使直尺左右平衡。

(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a 和b,(不妨设较长的一边为a)

(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

以上实验过程可以由学生填写在预先设计的记录表上

实验次数 棋子数 ab值 a与b的关系

右 左 a b

第1次 1 1

第2次 1 2

第3次 1 3

第4次 1 4

第n次 1 n

根据记录下的a、b值,探索a 与b的关系,由于目测可能有点误差。

根据实验得出a、b之间关系,猜想当第n次实验的a 和b的关系如何?a=nb(学生实验得出学生代表发言)

如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为L,支点应在直尺的哪个位置?(提示:用一元一次方程解)

此问题由学生合作解决并派代表板演并讲解,教师加以指正。

解:设支点离n枚棋子的距离为 x得:

x+nx=L x= 答:略

(三)、小结,由学生谈本节课的收获。

(四)、作业

1、课后了解实际生活中的类似活动问题,并举出几个例子。

2、课本,第110页活动2。

一元一次方程教案 篇4

教学目标WeI508.cOm

1、了解方程的概念和一元一次方程的概念;

2、知道什么是解方程,会检验某个值是不是方程的解;

3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

教学重点

1、一元一次方程的概念及方程的解;

2、能验证一个数是否是一个方程的解。

教学难点

寻找问题中的`等量关系,列出方程。

教学过程

一、情景诱导

同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的体重吗?

如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

二、自学指导

学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

附:自学提纲:

1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

2、什么是一元一次方程?请举出1—2个例子。

3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

5、什么是解方程?

三、展示归纳

1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

2、发动学生进行评价、补充、完善;

3、教师根据展示情况进行必要的讲解和强调。

四、变式练习

1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

附:变式练习

1、下列各式中,哪些是一元一次方程?

(1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1

(7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1

2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

3、已知关于X的方程2X+3=0为一元一次方程,求k的值。

4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是

5、设某数为x,根据题意列出方程,不必求解:

(1)某数比它的2倍小3;

(2)某数与5的差比它的2倍少11;

(3)把某数增加它的10%后恰为80.

6、若x=1是方程kx-1=0的解,则k= .

五、课堂小结

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

六、布置作业

课本83页习题3.1 第1题。

一元一次方程教案 篇5

设计理念

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,引导学生从身边的问题研究开始,主动寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流.在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决简单问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.

教材分析

本节的重点是建立实际问题的方程模型,通过探究活动,可以进一步体验一元一次方程与实际生活的密切关系,加强数学建模思想,培养学生运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近生活实际,所以在探究过程中正确建立方程是主要难点,突破难点的关键是弄清问题的背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.切实提高学生利用方程解决实际问题的能力.

学情分析

从“课程标准”看,在前面学段中已有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程.即对于方程的认识已经经历了入门阶段,具有一定的感性认识基础.但学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经历过自己的努力来克服困难的过程中体验如何进行探究活动,而不是代替他们思考,不要过早给出答案,应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思考,使其获得更大的收获.

教学目标

知识与技能:

1.用一元一次方程解决实际问题.

2.会通过移项、合并同类项解一元一次方程.

3.知道用一元一次方程解决实际问题的.基本过程.

数学思考:

1.会将实际问题转化为数学问题,通过列方程解决问题.

2.体会数学应用的价值.

解决问题:

会设未知数,并能利用问题中的相等关系列方程,对于列出的方程能用“移项”等方法来解决手机收费问题,进一步了解用方程解决实际问题的基本过程.

情感与态度:

通过学习,使学生更加关注生活,增强用数学的意识,从而激发其学习数学的热情.

教学重、难点

重点:会用一元一次方程解决实际问题.

难点:将实际问题转化为数学问题,通过列方程解决问题.

教学方法

采用探究、合作、交流等教学方式完成教学.

教学媒体

采用多种媒体辅助教学.

教学流程

一、创设情境,导入新课(观看大屏幕)

小明的爸爸新买了一部手机,他从电信公司了解到现在有两种移动电话计费方式:用“全球通”每月收月租费50元,此外根据累计通话时按0.40元/分加收通话费;用“神州行”没有月租,按0.60元/分收通话费.小明的爸爸不知道该怎么办?你们想探究这个问题吗?谁能给出主意?

[设计意图:由于移动电话(手机)在我国已很普及,选择经济实惠的收费方式很有现实意义,以这个问题形式出现,激发学生学习数学的热情,使学生能很有兴趣来探索这个问题.]

二、学习新课,探究新知

展现问题:

小明的爸爸新买了一部手机,他从电信公司了解到现有两种移动电话计费方式:

他正为选择哪一种方式犹豫呢?你能帮助他做出选择吗?

[设计意图:本例通过表格形式给出已知数据,先了解实际背景,类似这样用表格表达数量关系的实际问题很多,因此注意培养学生这方面的读题能力.]

(一)算一算:

一个月通话200分钟,按两种计费方式各需交费多少元?300分钟呢?

通话时间,全球通,神州行

[设计意图:这里用表格形式给出答案,便于学生对后面问题的分析.]

(二)议一议:

(1)累计通话t分钟,用“全球通”收费多少元?

(2)累计通话t分钟,用“神州行”收费多少元?

(3)对于某个通话时间,两种计费方式的收费会一样吗?

[设计意图:通过讨论,先给学生感性认识,再从具体到抽象,用字母来表示,其中的相等关系便可以找到了.]

(三)解一解:

设累计通话t分钟,两种计费方式的收费会一样.

则:

0.6t=50+0.4t,

移项,得0.6t-0.4t=50,

合并,得0.2t=50,

系数化为1,得t=250.

由上可知,如果一个月通话250分钟,那么两种计费方式的收费相同.

[设计意图:列出方程后,实际问题转化为数学问题了,至此,本问题已得到初步解决,让学生练习解方程的技能.]

(四)想一想:

怎样选择计费方式更省钱呢?(可分组交流)如果一个月内累计通话时间不足250分钟,那么选择“神州行”收费少;如果一个月内累计通话时间超过250分钟,那么选择“全球通”收费少.

[设计意图:这个选择是开放性的,答案与通话时间有关,应根据通话时间与250分钟的大小关系作出选择.]

(五)试一试:

根据以上解题过程,你能为小明的爸爸做选择了吗?如果小明的爸爸活动较多,与外界的联系一定不少,手机使用时间肯定多于250分钟,那么,他应该选择“全球通”,否则选择“神州行”.

[设计意图:这个选择是个拓展性思维问题,要根据小明爸爸业务活动的多少而定,培养学生解决生活中的实际问题的能力.]

(六)猜一猜:

假如你爸爸也遇到同样问题,请为你爸爸作出选择?

[设计意图:通过类似问题的回答,可以培养学生用数学的意识,体会到数学的使用价值。]

三、巩固训练,能力提升

1.方程6x+a=12与3x+1=6的解相同,则a=()。

A.1B.2C.3D.4

2.某蔬菜生产基地10月份上市青菜x万千克,11月份上市青菜是10月份的4倍还多5万千克,那么两个月份共上市青菜()万千克。

A.3x+3B.4x+4

C.5x+5D.6x+6

3.一列火车长为150米,以每秒15米的速度通过600米隧道,从火车进入隧道算起到这列火车完全通过隧道所需时间是()秒。

A.30B.40C.50D.60

4.有一根竹竿和一条绳子,竹竿比绳子短2米,把绳子对折后比竹竿短1.5米,则竹竿长()米.

A.3B.4C.5D.6

5.三个数的比是5∶6∶7,它们的和是198,则这三个数分别是()。

A.33、44、55B.44、55、66

C.55、66、77D.66、77、88

[设计意图:通过体验解决问题的全过程,形成解决问题的一些基本策略,发展实践能力和创新精神,进一步体会小组活动在数学中的作用。]

四、知识回顾,归纳总结

1.不同层次学生对本节知识认知程度(可谈收获及感受);

2.用一元一次方程分析和解决实际问题的基本过程(师生共同总结)。

[设计意图:结合例题的具体过程,帮助学生加深认识,培养在现实生活中应用数学的意识,使学生把所学知识进一步系统化。]

五、布置作业,巩固新知

1.基础作业:教材84页第4题,85页第10题。

2.课外探究:某学校在暑假将带领该校“科技能手”去北京旅游,甲旅行社说:“如果校长买全票,则其余学生可以享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价6折优惠”;若全票价为40元.

(1)如果学生为3人或7人时,两个旅行社各收费多少?

(2)学生数为多少时,两家旅行社的收费一样?

[设计意图:及时了解学生学习效果,调整教学安排,通过课后探究,独立思考,自我评价学习效果,使得基础知识和基本技能在头脑中留下较深刻的印象。

一元一次方程教案 篇6

教学目标:

1、理解什么是一元一次方程。

2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

3、进一步体会找等量关系,会用方程表示简单实际问题。

4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。

教学重点:

一元一次方程及方程的解。

教学难点:

寻找问题中的相等关系,列方程。

学习过程:

回顾旧知:方程的概念是什么?

问题1:鸡兔同笼

“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)

问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的`速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)

1、用等号“=”来表示相等关系的式子,叫等式。

2、像这样含有未知数的等式叫做方程

判断:下列各式是不是方程:

(1)-2+5=3 ;

(2)3x-1=0;

(3)y=3;

(4)x+y>2;

(5)2x-5y+1=0;

(6)xy-1=0;

(7)2m-n;

探究新知:

例1根据下列问题,设未知数并列出方程

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:

(1)设正方形的边长为x cm,然后发现相等关系:

4×边长=周长

可以利用这个相等关系,得到方程:4x=24

(2)设x个月后这台计算机的使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450

(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:

①只含有一个未知数;

②未知数的最高次数都是1。

只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?

(1)2x+3y-1;

(2) x2+2x+1=0;

(3)x+2y=3;

(4)1-x=x+1;

(5)x2+3=4;

(6)x+y=5;

(7)1+7=15-8+1;

(8)2χ2-5χ+1=0做一做:

x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?

方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:

1.将数值代入方程左边进行计算

2.将数值代入方程右边进行计算

3.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。

练一练:

请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?

(1)t=-2

(2)t=2 (3)t=1

练习提高:

根据下列问题,设未知数,列出方程:

1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?

3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。

小结:

1、方程的概念

2、一元一次方程的概念

3、方程的解的概念

一元一次方程教案 篇7

教学目的

1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

2、使学生加强了解列一元一次方程解应用题的方法步骤。

教学分析

重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

难点:寻找相遇问题中的相等关系。

突破:同时出发到相遇时,所用时间相等。注重审题,从而找到相等关系。

教学过程

一、复习

1、列方程解应用题的一般步骤是什么?

2、路程、速度、时间的关系是什么?

3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

二、新授

1、引入

列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。

例(课本P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:

慢车行程+快车行程=两站路程

设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

(2)再分析快车先开了30分两车相向而行的情形。

同样画出图形,并按课本讲解,(见教材P217~218)

由学生完成求解过程,并作出答案。

解:略

说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的`相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

(2)不是同时出发的,要注意时间的关系。

三、练习

P220练习:1,2。

四、小结

1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

2、相向而行的相遇问题中,要注意时间的关系。

五、作业

1、P222 4.4A:13,14,15。

2、基础训练:同步练习3。