实用文书网

2025一次函数教案(锦集八篇)

发表时间:2025-03-09

作为一位无私奉献的人民教师,编写教案是必不可少的,借助教案可以提高教学质量,收到预期的教学效果。如何把教案做到重点突出呢?以下是小编帮大家整理的一次函数教案,仅供参考,大家一起来看看吧。

一次函数教案 篇1

教学目标

1.知识与能力目标

(1)二元一次方程和一次函数的关系。

(2)二元一次方程组的图象解法。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法

学生操作——————自主探索的方法

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程

一. 故事引入

迪卡儿的故事——————蜘蛛给予的启示

十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

二. 尝试探疑

1、Y=x+1

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?

以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。

然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x—2

学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组

y=x+1 的解。

Y=4x—2

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

三. 方程与函数关系的应用

解方程组 x—2y=—2

2x—y=2

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的.关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1。把两个方程都化成函数表达式的形式。

2。画出两个函数的图象。

3。画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2。1 y=2。1

y=1。9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四. 引申

方程组 x+y=2

x+y=5 解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五. 课后小结

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六. 作业

1。用作图象法解方程组2x+y=4

2x—3y=12

2。如图,直线L、L相交于点 A,试求出A点坐标。

一次函数教案 篇2

一、教材的地位和作用

本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

(一)教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

2、能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

二、学情分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学方法

我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  四、教学设计

一、设疑,导入新课(2分钟)

师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

这节课让我们一起来研究 一次函数的图象。(板书)

二、自主探究小组交流、归纳问题升华:

1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)

用描点法作出下列一次函数的图象。

(1) y= 0.5x (2) y= 0.5x+2

(3) y= 3x (4) y= 3x + 2

师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?

生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)

师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)

师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法?

(一边思考,可以和同桌交流)(2分钟)

生1:用3个点。

生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用两点法画一次函数的过程)

师:做一做,请你用两点法在刚才的直角坐标系中,画出其余三个一次函数的`图象。(比一比谁画的既快又好)(4分钟)

师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。

组2:我们组认为尽量都找整数。

组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。我觉得可以根据情况来取点。

2、师:我们现在已经用:两点法把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察学生回答)(3分钟)

①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?

生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

师:问(2),直线y=kx+b(k0)中常数k和b的值对于两个函数的图象的位置关系平行或相交,有没有影响?说说你的看法。(5分钟)

(学生自主探究小组交流、归纳师生共同总结)

组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。

生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?

组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。

组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!

师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)

生:重合。

师:老师考一考你,有没有信心?

生:有。

师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?

①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。

生1:①两直线平行。②两直线相交,交点是(0,-3)。

生2:①两直线平行。②两直线相交,交点是(0,-3)。

师:一次函数的图象都是直线,它们的形状都 ,只是位置 。

问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索同桌交流)(3分钟)

生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。

师:同学们规律找得都很好,我们这节课只研究平移。

问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟)

(学生动力操作尝试小组交流归纳小组汇报)

组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。

组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。

师:(同学们说的都很好,生5的发现更好,)

师:出示幻灯片7,然后按来通过动画演示平行移动的过程。

问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)

生1:k值不变,b值变化。

生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

师:出示幻灯片7上的小规律。

做一做:(独立完成小组交流师生总结)(4分钟)

(1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。

(2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。

(3)将直线y=-x-5向上平移6个单位,得到直线( )。

(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。

组1汇报结果。

师:在这些问题中还有没有需要老师帮忙解决的?

生:没有。

三、你能谈谈你这节课的收获吗?(2分钟)

生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k0)

我还学会了用两点法画一次函数的图象。

生2:我觉得学习一次函数,既离不开数,也离不开图形。

生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

四、测一测:(6分钟)

师:老师觉得你们学的不错,你们认为自己学的怎么样?

生:好

师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组?

师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)

一、填空:1、一次函数y=kx+b(k0)的图象是( ),若该函数图象过原点,那么它是( )。

2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。

3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( )

4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。

5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。

二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )

A、交于同一个点 B、互相平行

C、有无数个不同的交点 D、交点的个数与k的具体取值有关

7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )

A、交于同一个点 B、互相平行的直线

C、有无数个不同的交点 D、交点个数的多少与b的具体取值有关

在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。

师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!)

师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。

师给予学生一定的时间,问:同学们对于这节课还有没有疑问?

生:没有。

四、作业:

在同一坐标系中画出下列函数的图象,并说出它们有什么关系?

(1)y=2x与y=2x+3

(2)y=-x+1与y=-3x+1

五、课外延伸:

直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。

  六、教后反思:

在本节课的教学中,我坚持以学生为主体,采用自主探究小组合作、交流问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透数学形结合的数学思想。每一个问题的解决我都坚持做到:给学生自主探究问题的机会;在学生想展示自己的做法时,给学生充足的时间让他们去合作交流当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。

一次函数教案 篇3

教学目标

1.知识与技能

领会一次函数的概念,会从实际问题中建立一次函数的模型

2.过程与方法

经历探索一次函数的过程,感受一次函数的解析式的特征

3.情感、态度与价值观

培养数形结合的数学,体会一次函数在实际生活中的应用价值

重、难点与关键

1.重点:一次函数的概念.

2.难点:从实际生活中建立一次函数的模型.

3.关键:把握好实际问题中的两个变量之间的相等关系,建立模型

教学方法

采用“情境──探究”的方法,让学生在实际问题中感悟一次函数的概念

教学过程

一、创设情境,揭示课题

问题思索1:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.

思路点拨y随x变化的规律是,从大本营向上当海拔加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x(或y=-6x+5),当登山队员由大本营向上登高0.5km时,他们所在位置的.气温就是x=0.5时函数y=-6x+5的值,即y=2(℃).

学生活动合作探究,寻找解题途径,踊跃发言,发表各自看法.

问题思索2:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?

(1)有人发现,在20~30℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差;(C=7t-35)

(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(G=h-105)

(3)某城市市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(y=0.01x+22)

(4)把一个长10cm,宽5cm的长方形的长减少x,宽不变,长方形的面积y(单位:cm2)随x的值而变化.(y=-5x+50)

教师活动提出问题,引导学生思考.

学生活动独立思考,列出函数关系式,并进行比较,得到这一类型函数的共同特征:这些函数的形式都是自变量x的k(常数)倍与一个常数的和

形成概念一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数

二、随堂练习,巩固深化

课本P11.4第练习1,2,3题.

三、课堂,发展潜能WwW.wei508.cOM

1.y=kx+b(k,b是常数,k≠0)是一次函数.

2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例

四、布置作业,专题突破

选用课时作业设计

板书设计

14.2.2一次函数(1)

1、一次函数的概念例:

2、一次函数与正比例函数的关系练习:

一次函数教案 篇4

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点

1、一次函数、正比例函数的概念及两者之间的关系。

2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

课件教学过程

一、创设问题情境,引入新课

1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的'长度是哪个变量的函数?为什么?

3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:

①左边都是因变量,右边都是含自变量的代数式;

②自变量X与因变量Y的次数都是1;

③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800

三、随堂练习

1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

A、y= +x B、y=—0。8x C、y=0。3+2x2 D、y=6—

2、已知函数y=(m+1)x+(m2—1),当m,y是x的一次函数;当m,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:

(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x—500,y乙=180x)

(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20—500=3500(元);y乙=180×20=3600(元);

y甲< y乙,所以到甲旅行社合算。)

(3)在什么情况下,选择乙旅行社?(依题意得,y甲— y乙>0,即(200x—500)—180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)

五、课堂小结

让学生归纳本节课学习内容:

1、一次函数、正比例函数概念以及它们之间的关系。

2、会根据已知信息写出一次函数的关系式。

六、作业读一读:

中国古代漏刻必做题:161页习题6.2第1、2、3题选

做题:161页试一试

一次函数教案 篇5

学习目标:(学习重点)

1.能根据k、b的符号说出一次函数y=kx+b的图象(直线)的大致情况.

2.理解并掌握一次函数y=kx+b的性质.

补充例题:

例1.在同一直角坐标系中画出下列函数的图象.

①y=2x-4y=12x+1

观察直线y=2x-4:

(1)图象与x轴的交点坐标是,与y轴的交点坐标是

(2)图象经过这些点:(-3,);(-1,);(0,);(,-2);(,2)

(3)当x的值越来越大时,y的值越来越

(4)整个函数图象来看,是从左至右(填上升或下降)

(5)当x取何值时,y>0?

②y=-2x+2y=-13x-1

观察直线y=-2x+2:

(1)图象与x轴的交点坐标是,与y轴的交点坐标是

(2)图象经过这些点:(-3,);(-1,);(0,);(,-4);(,-8)

(3)当x的值越来越大时,y的值越来越

(4)整个函数图象来看,是从左至右(填上升或下降)

(5)当x取何值时,y<0?

小结:一次函数y=kx+b有下列性质:1.当k>0时,y随x的增大而______,这时函数的图象从左到右_____;当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

2.当b>0时,这时函数的图象与y轴的交点在______

当b>0时,这时函数的图象与y轴的交点在_____.

当b=0时,这时函数的图象与y轴的交点在_____.

3.当k>0,b>0时,一次函数图像经过______________象限.

当k>0,b<0时,一次函数图像经过______________象限.

当k<0,b>0时,一次函数图像经过______________象限.

当k<0,b<0时,一次函数图像经过______________象限.

当k>0,正比例函数图像经过______________象限.

当k<0,正比例函数图像经过______________象限.

补充例题:

例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.

(2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()

例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.

(2)若k<0,b>0,则直线y=kx+b的图象经过第___________象限.

(3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.

例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?

例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象与y轴的交点在x轴下方,求m的取值范围.

课后续助:

一、填空题:

1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.

2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.

3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.

4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.

5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.

(2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.

(3)一次函数y=kx+1的`图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)

(4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.

(5)写出一个y随x的增大而减少的一次函数_______.

二、选择题:

1.直线y=x+1不经过的象限是( )

A.第一象限B.第二象限C.第三象限D.第四象限

2.下列函数中,y随x的增大而增大的函数是()

A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2

3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1

4.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则它的大致图象是()

ABCD

三、解答题:

1.已知一次函数y=(p+8)x+(6-q).

①p、q为何值时,y随x的增大而增大?

②p、q为何值时,函数与y轴交点在x轴上方?

③p、q为何值时,图象过原点?

2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.

3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.

4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.

(1)求m的值;

(2)当x取何值时,0<y<4?

一次函数教案 篇6

教学目标:

认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题.

2.学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的.

能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证.

教学重点:一次函数与一元一次不等式的关系的理解.

教学难点:利用一次函数的图象确定一元一次不等式的解集.

教学过程:

一、探究新知:

通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的值为0”是同一个问题.现在我们来看看:

(1)以下两个问题是否为同一个问题?

①解不等式:2x-4>0

②当x为何值时,函数y=2x-4的值大于0?

(2)你如何利用函数的.图象来说明②?

(3)“解不等式2x-4<0”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?

归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的值大(小)于0时,求自变量响应的取值范围.

二、应用新知:

1.练习:P42练习1(3)(4)

2.例2 用画函数图象的方法解不等式5x+4>2x+10.

思考:我们应该画出什么函数的图象来解?

思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象.

思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时

5x+4>2x+10.

三、巩固练习

1.P42练习2(2)

2.P45习题11.3第3、4题

四、

五、布置作业

一次函数教案 篇7

在数轴上除了有-1,-2,0,1,2,…有理数之外还存在着无理数,如以坐标圆点为顶点,以单位“1”的长度作正方形,则对角线的长度为,再以0点为圆心,对角线的长为半径画弧线与数轴交于点B,所以B点表示的数就是无理数,以此类推,我们还可以得到,-,…等更多的无理数,因此有理数和无理数就把数轴上的所有点填满了,所以实数与数轴上的点是一一对应的关系。并且数轴上的数从左到右逐渐增大

案例二:如图(2)在数轴上:

分析:在案例二的第二个问题中,是把形化为数,这是解决此类问题的突破口,也就是解题的瓶颈,只有利用形与数的完美结合与互化才能解决此类问题,体现了数形结合的思想价值。

1.2相反数与绝对值

相反数是指只有符号不同的两个数互为相反数,而绝对值是指一个数离开坐标原点的长度单位(注0的相反数与绝对值都是它本身),在相反数与绝对值的数学过程中,如果采用数形结合的方法进行教学,那么取得的教学效果是事半功倍。如图(2)中,1的相反数是-1,-2的相反数是2,的相反数是-,4的相反数是-4,1=1 -2=2 -3=3

由此我们还可以得出结论:①数轴上的数从左到右逐渐增大,②对于负数绝对值越大的数反而越小,③负数的绝对值等于它的相反数,正数的绝对值等于它本身,④互为相反数的两个数绝对值相等。在案例一,案例二中,如果我们只采用“数”的方法讲解,而不采用“数与形”结合的方式,学生是很难理解的,只有把数与形互相结合起来,真正做到直观化,形象化,学生就能够一目了然,由此我们还可以把问题由特殊化转为一般化,就可以很轻松的得到结论

解。反之,如果在平面直角坐标系中,知道了两条直线L1和L2的交点坐标,也可以根据交点坐标得出相应的方程组。

3.解决一元一次不等式(组)和一次函数结合的问题

在近几年中,考察不等式的题型在原有的填空题,选择题,解答题,求不等式组的解集的基础上有了新的突破。特别是在不等式与方程结合的实际方案优化设计问题,不等式和一次函数结合方面考察的较多。解决这类问题的关键是采用数形结合的思想,把“数”化为“形”,使复杂问题简单化。

案例5.已知直线经过点A(-1,-2)和点B(-2,0),直线经过点A,求不等式的解集。

解析:如果采用单一的“数”的形式来解决这类问题(即用代数的方法),需要把点的坐标代入函数关系式中,用“待定系数”法求出函数关系式,再把函数关系式代入不等式中组成不等式组,最后求出不等式组的解集。虽然这样处理问题,能够得到最终的答案,但是做起来感觉比较繁,又会浪费我们许多宝贵的时间。如果采用“数形结合”的办法来解决,会起到把复杂问题简单化,起到立竿见影,事半功倍的效果。

解析:⑴建立平面直角坐标系,作出函数图象,如图(5)所示。

⑵由函数图象可知:函数是减函数y随x的增大而减小,并且当x>-2时y-2时

x0.即x0

⑶函数是正比例函数,y随x的增大而增大。当x>O时y>O,即2x>O,当x

⑷函数与相交于点A(-1,-2),都与直线x = -1相交,并且在直线x = -1的`左侧是>2x,在x = -1的右侧是

因此不等式的解集是-2

由函数图象我们还以得到不等式的解集是-1

这样,我们就把复杂的问题简单化,从而起到优化解题途径的目的,做到“数”与“形”的互变。让学生产生豁然开朗的感觉,不仅提高了学习效率,还培养了学生的学习兴趣。

4.以形助数解决函数问题

在初中的教学内容中,函数包括一次函数,反比例函数和二次函数。在教学过程中数形结合的教学方法是解决函数问题的关键,要学会从“数”分析到“形”,由数的特征想到形的特征,又由形的特征想到数的特征,能够变抽象思维为形象思维。这样有助于把握数学问题的本质,做到由数思形,以形想数。

4.1解决一次函数问题

一次函数是历年学业水平测试命题的重要考点,尤其是最近几年,越来越受到重视,考查这部分的试题不仅数量多,而且题型新,一些与现实生活密切相关的应用题、阅读题、开放探索题等层出不穷,解决这类问题的关键是利用数形结合的办法。

案例6.如图(6)所示:小虹准备到甲、乙两商场去应聘,下图中L1,L2分别表示了甲、乙两商场每月付给员工的工资y1和y2(单位:元)与销售商品的件数x(单位:件)的关系。

⑴根据图象分别求出y1,y2与x的函数关系式。

⑵根据图象直接回答:如果小虹决定去应聘,她可能会选择甲商场还是乙商场?

解:(1)设L1的函数关系式为y1=k1x,把(40,600)带入y1=k1x中,得40k1=600,解这个方程,得k1=15,所以y1与x的函数关系式为y1=15x.

设L2的函数关系式为y2=k2x+b.把(0,400)与(40,600)带人y2=k2x+b中,得。解这个方程组,得。所以y2与x的函数关系式为y2=5x+400

(2)当销售件数大于40件时,选择甲商场

当销售件数小于40件时,选择乙商场

当销售件数等于40件时,选择去甲商场或乙商场都一样。

4.2解决反比例函数与一次函数结合的问题

反比例函数也是学业水平测试的必考内容,近年来备受青睐。反比例函数的图象与性质、解析式的确定及实践应用都是热点。在解答题中主要考查反比例函数与一次函数结合为主,难度处于低、中档次。

案例7.如图(7)所示:已知一次函数y1=x+2与反比例函数y2=图象相交于A,B两点,A点坐标为(1,3)。

⑴试确定B点的坐标及反比例函数的表达式。

⑵若y1>y2时,求x的取值范围

解:⑴反比例函数y2=的图象经过点A(1,3)

,k=3

反比例函数的表达式为

由消去y,得x2+2x-3=0,即(x+3)(x-1)=0

x=-3或x=1,可的y=-1或y=3

于是或

点B在第三象限,点B的坐标为B(-3,-1)

⑵要求y1>y2时,x的取值范围,即x+2> 。此时对于初中的学生来说,要用代数的方法解决这个问题是很难的,可以说是无法解出的。要解决这个问题,我们只能借助函数图象,采用数形结合的办法来解决,使问题简单化。

解析:①分别过一次函数和反比例函数图象的交点作x轴的垂线,分别与x轴相交于-3和1(即直线x=-3和直线x=1,如图(7)中的虚线所示)。②分别以直线x=-3和直线x=1的左右来区分是一次函数的值大,还是反比例函数的值大。而在直线x=-3和直线x=1的左右两边,什么函数图象在上,就是该函数的函数值大。③根据函数值确定自变量的取值范围(注:自变量x不能取到0,要与y轴为分界线)

因此y1>y2时,x的取值范围就只能在直线x=-3和直线x=1的右边来确定。因为在直线x=-3和直线x=1的右边都是一次函数的图象在上,所以y1>y2时,自变量x的取值范围是-3

4.3解决二次函数的问题。

二次函数是初中水平测试命题的热点,各种题型,各档次试题都会涉及。特别是与实际生活相关的阅读理解题、实际应用题、探索题在最近几年中更为突出。解决这类问题的关键是利用二次函数的图像与性质,建立二次函数模型,用数形结合的思想方法进行。

5.解决概率的问题。

例8.在一个不透明的口袋里装有5个分别标有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同。现从口袋里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标。那么点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率是多少呢?

解:⑴画树形图表示点P的所有可能情况

开始

⑵点P的坐标有P1(1,1),P2(2,4),P3(0,0),P4(-1,1),P5(-2,4).其中点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的点只有P1(1,1),所以点P落在抛物线y=-x2+2x+3与x轴所围成的区域内(不含边界)的概率为。

6.教学过程中要注意数学思想的培养

中学阶段的数学基本思想包括分类讨论的思想,数形结合思想,变换与转化的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想等等,中学数学中处处渗透着基本数学思想,如果能使它落实到学生学习和教学上,就能够发展学生的数学能力。其中数形结合思想使一种很重要的思想,它贯穿于整个初中数学的教学内容中。对中学数形结合思想的研究有助于我们更好的掌握中学数学知识,提高解题能力,尤其在初三系统复习中,如果教师利用好“数形结合”思想来培养学生的学习兴趣,那么提高学习效率,提高教学成绩是有很大帮助的,我们就能在学业水平测试中取得优异的成绩。

一次函数教案 篇8

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的.有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

为了您方便浏览更多的一次函数教案网内容,请访问一次函数教案