实用文书网

初二数学知识点总结归纳(系列6篇)

发表时间:2025-05-09

初二数学知识点总结归纳 篇1

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于•180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

位置与坐标

1、确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

3、轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

初二数学知识点总结归纳 篇2

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

初二数学知识点总结归纳 篇3

多边形

1、多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。组成多边形的各条线段叫做多边形的边;每相邻两条边的公共端点叫做多边形的顶点;多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角。在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.

2、多边形的分类

多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

凸多边形凹多边形各个角都相等、各个边都相等的多边形叫做正多边形。

3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

(2)n边形共有条对角线。

4、多边形的内角和外角

(1)多边形的内角和公式:n边形的内角和为(n-2)×180°

(2)多边形的外角和等于360°,它与边数的多少无关。

推论:

(1)内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少。每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍。

(2)多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角。

初二数学知识点总结归纳 篇4

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

三、数据的分析

1、平均数

①一般地,对于n个数x1x2...xn,我们把(x1+x2+•••+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数最多的那个数据叫做这组数据的众数。

③平均数、中位数和众数都是描述数据集中趋势的统计量。

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

⑥各个数据重复次数大致相等时,众数往往没有特别意义。

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

②数学上,数据的离散程度还可以用方差或标准差刻画。

③方差是各个数据与平均数差的平方的平均数。

④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

初二数学知识点总结归纳 篇5

三角形知识点

1、全等三角形的对应边、对应角相等。

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

5、边边边公理(SSS)有三边对应相等的两个三角形全等。

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

7、定理1在角的平分线上的点到这个角的两边的距离相等。

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上。

9、角的平分线是到角的两边距离相等的所有点的集合。

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。

函数与方程知识点【WwW.289A.com 生日祝福语网】

1、一次函数也叫做线性函数,一般在X,Y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

2、任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。

3、利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。

注意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。

4、每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。

5、解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

初二数学知识点总结归纳 篇6

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。