初中数学复习教案 篇1
一、知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
一、(1)所有有理数组成的数集叫做有理数集;
二、(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。
4、比较两个有理数大小的方法有:
(1)根据有理数在数轴上对应的点的位置直接比较;
(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基础训练
选择题
1、下列运算中正确的是().
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判断句中错误的是()
A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、、是有理数,若>且,下列说法正确的是()
A.一定是正数B.一定是负数C.一定是正数D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是()
A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数
5、两个非零有理数的和为零,则它们的商是()
A.0B.-1C.+1D.不能确定
6、一个数和它的倒数相等,则这个数是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列说法中,正确的个数是()
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1B、2C、3D、4
11、如果一个数的相反数比它本身大,那么这个数为()
A、正数B、负数
C、整数D、不等于零的有理数
12、下列说法正确的是()
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
填空题
1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.
4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.
5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.
6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+2001-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。
11、正数–a的绝对值为__________;负数–b的绝对值为________
12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)
14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
三、强化训练
1、计算:1+2+3+…+2002+2003=__________.
2、已知:若(a,b均为整数)则a+b=
3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
4、已知,则___________
5、已知是整数,是一个偶数,则a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。
9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。
例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):
星期一二三四五
每股涨跌+4+4.5-1-2.5-6
第1章(1)星期三收盘时,每股是多少元?
第2章(2)本周内最高价是每股多少元?最低价是多少元?
第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?
第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。
四、竞赛训练:
1、最小的非负有理数与最大的非正有理数的和是
2、乘积=
3、比较大小:A=,B=,则A B
4、满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位数的质数与最小的两位数的质数的积是( )
A、11 B、22 C、26 D、33
6、比较
7、计算:
8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
9、计算:
10、计算
11、计算1+3+5+7+…+1997+1999的值
12、计算1+5+52+53+…+599+5100的值.
13、有理数均不为0,且设试求代数式2000之值。
14、已知a、b、c为实数,且,求的值。
15、已知:。
16、解方程组。
17、若a、b、c为整数,且,求的值。
1.2.1有理数
七年级上(1.1正数和负数,1.2有理数)
1.2有理数
初中数学复习教案 篇2
一、课题 §复习(1)
二、教学目标
1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;
2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
3掌握本章的全部定理和公理;
4理解本章的数学思想方法;
5了解本章的题目类型
三、教学重点和难点
重点是理解本章的知识结构,掌握本章的全部定理和公理;
难点是理解本章的数学思想方法
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、本章的知识结构
(二)、本章中的概念
1直线、射线、线段的概念
2线段的中点定义
3角的两个定义
4直角、平角、周角、锐角、钝角的概念
5互余与互补的角
(三)、本章中的公理和定理
1直线的公理;线段的公理
2补角和余角的性质定理
(四)、本章中的主要习题类型
1对直线、射线、线段的概念的理解
例1 下列说法中正确的是 [ ]
a延长射线op b延长直线cd
c延长线段cd d反向延长直线cd
解:c因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的而线段有两个端点,可以向两方延长
例2 如图1-57中的线段共有多少条?
解:15条,它们是:线段ab,ad,af,ac,ae,ag,bd,bf,df,ce,cg,eg,bc,de,fg
2线段的和、差、倍、分
例3 已知线段ab,延长ab到c,使ac=2bc,反向延长ab
解:b如图1-58,因为ad是bc的二分之一,bc又是ac的二分之一,所以ad是ac的四分之一
例4 如图1-59,b为线段ac上的一点,ab=4cm,bc=3cm,m,n分别为ab,bc的中点,求mn的长
解:因为ab=4,m是ab的中点,所以mb=2,又因为n是bc的中点,所以bn=1.5则mn=2+1.5=3.5
3角的概念性质及角平分线
例5 如图1-60,已知aoc是一条直线,od是∠aob的平分线,oe是∠boc的平分线,求∠eod的度数
所以∠boe+∠bod=(∠aob+∠boc)÷2=90°则∠eod=90°
例6 如图1-61,已知∠aob=∠cod=90°,又∠aod=150°,那么∠aoc与∠cob的度数的比是多少?
解:因为∠aob=90°,又∠aod=150°,所以∠bod=60°
又 ∠cod=90°,所以∠cob=30°
则 ∠aoc=60°,(同角的余角相等)∠aoc与∠cob的度数的比是2∶1
初中数学复习教案 篇3
一、 复习内容:
1. 分数的初步认识;
2. 小数的认识;
3. 小数的加法和减法;
4. 小数的乘法和除法;
5. 正小数和负小数的认识和四则运算
6. 小数四则混合运算和应用题
(1)小数四则混合运算和式题
(2)解方程
(3)应用题
7. 三角形的面积
8. 平均数(二)
二、复习目标:
1. 会看图讲出分数的含义,会用分数表示某部分占总数的几分之几,掌握比较同分母或同分子分数大小的方法。
2. 理解小数的意义和性质,知道小数的计数单位和相邻两个单位之间的进率,会说出小数的组成,会比较两个或两个以上小数的大小。
3. 掌握小数四则混合运算顺序与整数四则混合运算顺序相同,会正确计算。
4. 能运用整数加减法的运算定律和性质对小数加减法进行简便运算。
5. 会应用乘法运算定律和除法的一些性质,使一些小数的乘、除法的计算简便。
6. 会用小数点位置移动引起小数大小变化的规律,把一个数扩大(或缩小)10倍、100倍、1000倍……。
7. 会进行单名数与复名数之间的互相改写。
8. 会列综合算式解答小数四则计算的文字题(不超过三步)。
9. 会列方程解应用题。
10. 会应用公式计算三角形的面积。
11. 理解等底、等高的三角形面积相等。
12. 会计算一些组合图形的面积。
13. 会解答较复杂的平均数应用题。
三、复习重点:
(1) 分数的含义,会比较分数的大小。
(2) 小数的意义。
(3) 小数加、减法的笔算方法和应用加法运算定律、减法运算性质进行简便运算。
(4) 一个数乘以、除以10、100、1000。
(5) 小数乘、除法的计算法则。
(6) 小数乘除法的混合运算和应用运算定律进行简便计算。
(7) 小数四则混合运算和应用题。
(8) 理解三角形面积公式的推导过程,正确学会使用面积公式。
(9) 较复杂的平均数应用题。
四、复习难点:
(1)分数概念的理解,对带单位名称的分数和不带单位名称的分数的区别。
(2)小数的组成。
(3)整数减小数的连续退位的减法。
(4)名数与名数之间的互化。
(5)乘数是纯小数的乘法的意义。
(6)小数除以小数的计算法则。
(7)有两个未知量时怎样设未知数。
(8)找准三角形对应的底和高,会根据等底、等高的.原理计算有关三角形的面积。
五、复习内容和课时安排:
1. 小数的加法和减法运算 1课时
2. 小数的乘法和除法的计算 1课时
3. 小数的有关性质与概念: 1课时
4. 正小数、负小数的认识和四则运算; 2课时
5. 小数四则混合运算式题和应用题; 2课时
6. 三角形面积: 2课时
7. 平均数(二) 1课时
六、复习措施:
认真上好复习课,对平时作业中出现的问题重点讲解。要加强对学生计算能力的培养,养成认真计算、自觉验算的习惯。培养学生分析应用题等量关系的能力。大多数学生基础较好,但有些学生学习习惯不是很好,学习不踏实,因此要加强对学生学习习惯的培养,养成认真审题、认真做题的习惯。有两位学生基础较差,要做好对他们的补差工作,让他们缩短与同学们的差距。
初中数学复习教案 篇4
初中毕业班数学教师必须面对的问题。下面就结合我县学校近几年来初中数学总复习备考教学,谈谈本届初中毕业班数学总复习的教学计划。
1.1、第一轮复习(4月初至4月底).
⑴第一轮复习的形式。
①第一轮复习的目的是要“过三关”:ⅰ过记忆关。必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。ⅱ过基本方法关。如,待定系数法求二次函数解析式。ⅲ过基本技能关。如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
②基本宗旨:知识系统化,训练专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。ⅰ可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;ⅱ将几何部分分为六个单元:相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。ⅲ复习完每个单元进行一次单元测试,重视补缺工作。
⑵第一轮复习应该留意的几个问题。
①必须扎扎实实地夯实基础。今年中考试题按难:中:易=1:2:7的比例,基础分占总分(150分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到纯熟、准确和迅速。
②中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
③不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中关键的强化练习。
④留意气候。第一轮复习在四月份,大家都知道,四月份是学习的黄金季节,四月份天气渐热,会一定程度影响学习。
⑤定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化,有利于大面积提高教学质量。
⑥从实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反馈”的方法。
⑦注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学困生体验成功。
⑧应注重对尖子的.培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。对于接受能力好的同学,课外适当开展兴趣爱好小组,培养解题技巧,提高灵活度,使其冒“尖”。
1.2、第二轮复习(5月上旬至5月中旬).
⑴第二轮复习的形式。
①假如说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。
②第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;第二轮复习重点突出,主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
③可进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的应用题”、“几何综合问题”,、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等问题以便学生认识、适应这类题型。
⑵第二轮复习应该注意的几个问题。
①第二轮复习不再以节、章、单元为单位,而是以专题为单位。
②专题的划分要合理。
③专题的选择要准、安排时间要合理。专题选的准不准,主要取决于对课程标准和中考题的研究。专题要有代表性,切忌面面俱到;专题要由针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。
④注重解题后的反思。
⑤以题代知识,由于第二轮复习的非凡性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。
⑥专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是狠难提高的,提高学生的能力,这是第二轮复习的任务。但要兼顾各种因素把握一个度。
⑦专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海,不能急于赶进度。
⑧注重资源共享。
